Power Analysis
Power Analysis
G*Power: Statistical Power Analyses for Windows and Mac
https://www.youtube.com/watch?v=5ccl4nmtUpM
Power and Sample Size
http://powerandsamplesize.com/
Sample size estimation and statistical power analyses
PASS Documentation
https://www.ncss.com/software/pass/pass-documentation/
NCSS PASS YouTube Channel
https://www.youtube.com/channel/UCNcvYpuMaaaFaAanqkFXRbw/featured
Tests for Two Means in a Repeated Measures Design
Power calculation for comparing sample means from two paired samples
https://www.youtube.com/watch?v=RCox1fE8rQw
G*Power: Statistical Power Analyses for Windows and Mac
https://www.youtube.com/watch?v=5ccl4nmtUpM
Power and Sample Size
http://powerandsamplesize.com/
Sample size estimation and statistical power analyses
PASS Documentation
https://www.ncss.com/software/pass/pass-documentation/
NCSS PASS YouTube Channel
https://www.youtube.com/channel/UCNcvYpuMaaaFaAanqkFXRbw/featured
Tests for Two Means in a Repeated Measures Design
Power calculation for comparing sample means from two paired samples
https://www.youtube.com/watch?v=RCox1fE8rQw
JAMOVI ile orneklem sayisi belirleme
http://www.bwgriffin.com/workshop/Sampling A Cohen tables.pdf
Karsimiza cikan ikinci secenek "minimally-interesting effect size" (ilgilenilen en dusuk etki buyuklugu) bu analizin en onemli bolumunu olusturmaktadir. Arastirma oncesi orneklem belirlemek istiyorsaniz nasil bir etki buyuklugu beklediginizi belirlemeniz gerekir. Etki buyuklugu iki grup arasinda ne kadar buyuk bir fark oldugunun bir olcusudur (Cohen, 1992'ye bakmanizi oneririm). Beklenen etki buyuklugunu belirlemenin en kolay yolu literaturdeki benzer calismalardaki etki buyukluklerine bakmaktir.
Bagimsiz iki grubun karsilastirilamsinda kullanilan en populer etki buyuklugu olcusu "Cohen's d"dir. 1 birim d iki grup arasinda 1 standart sapma fark olduguna isaret eder. Cohen (1992) d=0.2 kucuk, d=0.5 orta, ve d=0.8 buyuk etki buyuklukleri olarak onermistir.
"power by effect size" tablosu ise eger "gercek" etki buyuklugu tahminimizden farkliysa ne olabilecegini aciklamaktadir.
Ornegin gercek etki buyuklugu "orta derece" degil de daha kucuk ise (ornegin 0.3'ten kucuk - tablonun ilk satiri), grup basina 86 gozlemimizin istatistiki gucu %50 den daha az olacak ve calismamiz buyuk ihtimalle bu etkiyi tespit edemeyecek ("likely miss").
buyuk etkiler soz konusu oldugunda daha kucuk orneklemler yeterli olabilmektedir
Selecting a sample size for studies with repeated measures
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734029/
https://glimmpse.samplesizeshop.org/
https://homepage.divms.uiowa.edu/~rlenth/Power/
https://sites.google.com/site/optimaldesignsoftware/home
https://www.statsols.com/nquery
POWERLIB:SAS/IMLSoftware for Computing Power in Multivariate Linear Models
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228969/
https://github.com/SampleSizeShop/POWERLIB
SPSS SamplePower
https://www-01.ibm.com/marketing/iwm/iwmdocs/tnd/data/web/en_US/trialprograms/U741655I36057W80.html
G*Power: Statistical Power Analyses for Windows and Mac
https://www.youtube.com/watch?v=5ccl4nmtUpM
Power and Sample Size
http://powerandsamplesize.com/
Sample size estimation and statistical power analyses
PASS Documentation
https://www.ncss.com/software/pass/pass-documentation/
NCSS PASS YouTube Channel
https://www.youtube.com/channel/UCNcvYpuMaaaFaAanqkFXRbw/featured
Tests for Two Means in a Repeated Measures Design
Power calculation for comparing sample means from two paired samples
https://www.youtube.com/watch?v=RCox1fE8rQw
G*Power: Statistical Power Analyses for Windows and Mac
https://www.youtube.com/watch?v=5ccl4nmtUpM
Power and Sample Size
http://powerandsamplesize.com/
Sample size estimation and statistical power analyses
PASS Documentation
https://www.ncss.com/software/pass/pass-documentation/
NCSS PASS YouTube Channel
https://www.youtube.com/channel/UCNcvYpuMaaaFaAanqkFXRbw/featured
Tests for Two Means in a Repeated Measures Design
Power calculation for comparing sample means from two paired samples
https://www.youtube.com/watch?v=RCox1fE8rQw
JAMOVI ile orneklem sayisi belirleme
http://www.bwgriffin.com/workshop/Sampling A Cohen tables.pdf
Karsimiza cikan ikinci secenek "minimally-interesting effect size" (ilgilenilen en dusuk etki buyuklugu) bu analizin en onemli bolumunu olusturmaktadir. Arastirma oncesi orneklem belirlemek istiyorsaniz nasil bir etki buyuklugu beklediginizi belirlemeniz gerekir. Etki buyuklugu iki grup arasinda ne kadar buyuk bir fark oldugunun bir olcusudur (Cohen, 1992'ye bakmanizi oneririm). Beklenen etki buyuklugunu belirlemenin en kolay yolu literaturdeki benzer calismalardaki etki buyukluklerine bakmaktir.
Bagimsiz iki grubun karsilastirilamsinda kullanilan en populer etki buyuklugu olcusu "Cohen's d"dir. 1 birim d iki grup arasinda 1 standart sapma fark olduguna isaret eder. Cohen (1992) d=0.2 kucuk, d=0.5 orta, ve d=0.8 buyuk etki buyuklukleri olarak onermistir.
"power by effect size" tablosu ise eger "gercek" etki buyuklugu tahminimizden farkliysa ne olabilecegini aciklamaktadir.
Ornegin gercek etki buyuklugu "orta derece" degil de daha kucuk ise (ornegin 0.3'ten kucuk - tablonun ilk satiri), grup basina 86 gozlemimizin istatistiki gucu %50 den daha az olacak ve calismamiz buyuk ihtimalle bu etkiyi tespit edemeyecek ("likely miss").
buyuk etkiler soz konusu oldugunda daha kucuk orneklemler yeterli olabilmektedir
Selecting a sample size for studies with repeated measures
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734029/
https://glimmpse.samplesizeshop.org/
https://homepage.divms.uiowa.edu/~rlenth/Power/
https://sites.google.com/site/optimaldesignsoftware/home
https://www.statsols.com/nquery
POWERLIB:SAS/IMLSoftware for Computing Power in Multivariate Linear Models
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228969/
https://github.com/SampleSizeShop/POWERLIB
SPSS SamplePower
https://www-01.ibm.com/marketing/iwm/iwmdocs/tnd/data/web/en_US/trialprograms/U741655I36057W80.html
Power Analysis
G*Power: Statistical Power Analyses for Windows and Mac
https://www.youtube.com/watch?v=5ccl4nmtUpM
Power and Sample Size
http://powerandsamplesize.com/
Sample size estimation and statistical power analyses
PASS Documentation
https://www.ncss.com/software/pass/pass-documentation/
NCSS PASS YouTube Channel
https://www.youtube.com/channel/UCNcvYpuMaaaFaAanqkFXRbw/featured
Tests for Two Means in a Repeated Measures Design
Power calculation for comparing sample means from two paired samples
https://www.youtube.com/watch?v=RCox1fE8rQw
JAMOVI ile orneklem sayisi belirleme
http://www.bwgriffin.com/workshop/Sampling A Cohen tables.pdf
Karsimiza cikan ikinci secenek "minimally-interesting effect size" (ilgilenilen en dusuk etki buyuklugu) bu analizin en onemli bolumunu olusturmaktadir. Arastirma oncesi orneklem belirlemek istiyorsaniz nasil bir etki buyuklugu beklediginizi belirlemeniz gerekir. Etki buyuklugu iki grup arasinda ne kadar buyuk bir fark oldugunun bir olcusudur (Cohen, 1992'ye bakmanizi oneririm). Beklenen etki buyuklugunu belirlemenin en kolay yolu literaturdeki benzer calismalardaki etki buyukluklerine bakmaktir.
Bagimsiz iki grubun karsilastirilamsinda kullanilan en populer etki buyuklugu olcusu "Cohen's d"dir. 1 birim d iki grup arasinda 1 standart sapma fark olduguna isaret eder. Cohen (1992) d=0.2 kucuk, d=0.5 orta, ve d=0.8 buyuk etki buyuklukleri olarak onermistir.
"power by effect size" tablosu ise eger "gercek" etki buyuklugu tahminimizden farkliysa ne olabilecegini aciklamaktadir.
Ornegin gercek etki buyuklugu "orta derece" degil de daha kucuk ise (ornegin 0.3'ten kucuk - tablonun ilk satiri), grup basina 86 gozlemimizin istatistiki gucu %50 den daha az olacak ve calismamiz buyuk ihtimalle bu etkiyi tespit edemeyecek ("likely miss").
buyuk etkiler soz konusu oldugunda daha kucuk orneklemler yeterli olabilmektedir
Selecting a sample size for studies with repeated measures
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734029/
https://glimmpse.samplesizeshop.org/
https://homepage.divms.uiowa.edu/~rlenth/Power/
https://sites.google.com/site/optimaldesignsoftware/home
https://www.statsols.com/nquery
POWERLIB:SAS/IMLSoftware for Computing Power in Multivariate Linear Models
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228969/
https://github.com/SampleSizeShop/POWERLIB
SPSS SamplePower
https://www-01.ibm.com/marketing/iwm/iwmdocs/tnd/data/web/en_US/trialprograms/U741655I36057W80.html
Last updated